of KBr), v/cm^{-1} : 2980 (C—H); 2595 (B—H); 1760, 1720 (C=O). ¹H NMR (C₆D₆), δ : 0.30 (t, 3 H, CH₂CH₃, J = 7.1 Hz); 3.28 (q, 2 H, CH₂CH₃, J = 7.1 Hz); 3.59 (d, 1 H, CH—CB, J = 1 Hz); 3.94 (d, 1 H, CH—CH, J = 1 Hz); 7.1—7.5 (m, 9 H, Ar).

3-Carbethoxy-4-(isopropyl-o-carboranyl)-3,4-dihydrocoumarin (3b). A. Compound 3b was prepared from 1-isopropyl-2-lithium-o-carborane 1a (0.01 mol) and compound 2 (0.01 mol) similarly to 3a, procedure A, yield 3.2 g (79 %), m.p. 188–189 °C (benzene—hexane).

B. Compound **3b** was prepared from 1-isopropyl-2-bromomagnesium-o-carborane **1b** (0.01 mol) and compound **2** (0.01 mol) similarly to **3a**, procedure **B**, yield 2.26 g (56 %). Found (%): C, 50.21; H, 6.77; B, 26.39. $C_{17}H_{28}B_{10}O_4$. Calculated (%): C, 50.49; H, 6.93; B, 26.73.

IR (5 mg/600 mg of KBr), v/cm^{-1} : 2982 (C—H); 2600 (B—H); 1760, 1722 (C=O). ¹H NMR (C₆D₆), δ : 0.45 (t, 3 H, CH₃CH₂, J = 7.1 Hz); 0.87 (d, 6 H, (CH₃)₂CH), J = 7 Hz); 2.21 (m, 1 H, (CH₃)CH, J = 7.1 Hz); 4.07 (s, 2 H, CH—CH); 6.4—6.8 (m, 4 H, Ar).

References

- L. I. Zakharkin and A. V. Kazantsev, Zh. Obshch. Khim., 1966, 36, 944 [J. Gen. Chem. USSR, 1966, 36 (Engl. Transl.)].
- L. I. Zakharkin and A. V. Kazantsev, Zh. Obshch. Khim., 1967, 37, 554 [J. Gen. Chem. USSR, 1967, 37 (Engl. Transl.)].
- L. I. Zakharkin, A. V. Kazantsev, B. T. Ermaganbatov, and A. P. Fonshtein, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1975, 710 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1975, 24 (Engl. Transl.)].
- A. V. Kazantsev, Yu. A. Kazantsev, and V. V. Butyaikin, Metalloorg. Khim., 1992, 3, 570 [J. Organomet. Chem. USSR, 1992, 3 (Engl. Transl.)].

Received January 10, 1995; in revised form May 11, 1995

Cyclocondensation of benzylideneanilines with 2-(thiazolyl-4)cyclohexane-1,3-dione hydrochlorides. A novel reaction in the series of Schiff's bases

O. V. Gulyakevich* and A. L. Mikhal'chuk

Institute of Bioorganic Chemistry, Belarus' Academy of Sciences, 5/2 ul. Zhodinskaya, 220141 Minsk, Belarus'.

Fax: +7 (017 2) 637 274

The formation of a pyridine ring through condensation of various β -di- and β , β '-tricarbonyl compounds with amines, enamines, or azomethines has acquired wide use in preparing derivatives of both pyridine itself and a number of fused heterocyclic compounds incorporating pyridine rings. ¹⁻³ However, no data concerning synthetic application of 2-hetaryl(aryl)-1,3-dicarbonyl compounds have been published in the literature.

While continuing studies on reactions of Schiff's bases with β -dicarbonyl compounds and their enol derivatives, 4-6 we found that benzylideneanilines react with 2-thiazolyl derivatives of cyclic 1,3-diketones to give thiazolo[c]quinoline derivatives.

For example, boiling an equimolar mixture of benzylideneanilines $(1\mathbf{a},\mathbf{b})$ with 2-(2-aminothiazolyl-4)cyclohexane-1,3-dione hydrochlorides $(2\mathbf{a},\mathbf{b})$ in alcohols or glacial acetic acid yields little known thiazolo[c]quinoline hydrochlorides $(3\mathbf{a},\mathbf{b})$, which are difficult to obtain.

These compounds are of much interest, first, as compounds possessing potential biological activity and, second, as intermediate compounds in synthesis of biologically active quinoline derivatives, including some quinoline alkaloids. There are weighty grounds to believe that this reaction is rather general and can be extended to acyclic 2-hetaryl-1,3-dicarbonyl compounds and used, for example, in the synthesis of thiazolo[c]pyridine derivatives. The mechanism of this reaction, the limits of its applicability, and optimization of its conditions are being currently studied.

IR spectra were recorded on a UR-20 instrument. UV spectra were measured on a Specord M-400 spectrophotometer.

Benzylideneanilines 1a,b used in the study were prepared by the general procedure, and 2-(thiazolyl-4)cyclohexane-1,3-diones 2a,b were synthesized by the procedure described by us previously. The course of the reactions was monitored by TLC on Silufol UV-254 plates using a 9:1 chloroform—

Ar¹

$$N$$
 Ar^2
 R^1HN
 R^1HN
 R^1HN
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2

$$- \begin{bmatrix} R^1HN & 0 & R^1HN & 0 \\ Ar^1 & N & 0 & R^2 \\ Ar^2 & R^2 & Ar^1 & N & R^2 \\ Ar^2 & Ar^2 & Ar^2 & R^2 \end{bmatrix}^+ CI^-$$

a: $Ar^1 = Ar^2 = R^1 = Ph$, $R^2 = Me$; b: $Ar^1 = MeO-4-C_6H_4$, $Ar^2 = Me-4-C_6H_4$, $R^1 = R^2 = H$

3a,b

methanol mixture as the eluent; the plates were visualized by UV irradiation or iodine vapor with subsequent heating to 250—300 °C. Melting points were determined using a Boetius hot-stage apparatus.

4H-6,6-Dimethyl-4-oxo-8,9-diphenyl-2-phenylamino-5,6,7trihydrothiazolo[5,4-c]quinolinium chloride (3a). A mixture of benzylideneaniline 1a (0.22 g) and diketone 2a (0.44 g) in anhydrous ethanol (10 mL) was boiled for 5 h in an argon atmosphere. Then the reaction mixture was evaporated to dryness, and the residue was dissolved in 1 NHCl and extracted with chloroform. The extracts were thrown away, and the aqueous phase was saturated with sodium chloride and extracted with chloroform. The collected extracts were dried with sodium sulfate, filtered, and concentrated, and the residue was crystallized from a 3:5 ethanol-ether mixture to give 0.37 g (58.5 %) of bright yellow crystals of thiazoloquinoline 3a, m.p. 332-334 °C. Found (%): C, 70.29; H, 5.07; Cl, 6.99; N, 8.17; S, 6.32. $C_{30}H_{26}N_3OS \cdot HCl.$ Calculated (%): C, 70.37; H, 5.12; Cl, 6.92; N, 8.21; S, 6.26. UV (EtOH), $\lambda_{\text{max}}/\text{nm}$: 203 (49075), 257 (20625), 283 (12090), 380 (13515). IR (KBr), v/cm⁻¹: 3600–3250, 3100–2300, 1688, 1620–1595, 1562, 1500—1435, 1400, 1268, 1250, 1221, 761, 710.

4H-2-Amino-8-(4-methylphenyl)-9-(4-methoxyphenyl)-4-oxo-5,6,7-trihydrothiazolo[5,4-c]quinolinium chloride (3b). A suspension of diketone 2b (0.31 g) in anhydrous ethanol (15 mL) was added to a solution of substituted benzylideneaniline 1b (0.28 g) in anhydrous ethanol (15 mL), and the mixture was boiled in an argon flow until it became entirely homogeneous (~2.5—3 h). Then it was boiled for an additional 2 h, during which ethanol was gradually evaporated, until the volume of the reaction mixture was ~10 mL. As this took place, a crystalline solid began to precipitate. The resulting mixture was allowed to stand for 24 h at +5 °C to complete crystallization. The resulting compound was filtered off and

recrystallized from an ethanol—ether mixture (3:4) to give 0.22 g (40.2 %) of pale yellow crystals of **3b**, m.p. >300 °C (dec.). Found (%): C, 62.71; H, 4.97; Cl, 8.11; N, 9.49; S, 7.31. $C_{23}H_{26}N_3O_2S \cdot HCl$. Calculated (%): C, 62.79; H, 5.04; Cl, 8.06; N, 9.55; S, 7.29. UV (EtOH), λ_{max}/nm : 240 (26240), 268.7 (20790), 325 (22155). IR (KBr), ν/cm^{-1} : 3600—2400, 1692, 1645—1600, 1515, 1500—1475, 1405, 1256, 1180, 1027, 845, 755.

References

- Comprehensive Heterocyclic Chemistry, Ed. A. R. Katritzky, Pergamon Press, Oxford, 1984, 2, 689 p.
- F. Brody and F. R. Ruby, in *Pyridine and Its Derivatives*,
 E. Klingsberg, Interscience Publishers, New York,
 1960, 1, 99.
- 3. G. P. Ellis, *Synthesis of Fused Heterocycles*, John Wiley and Sons, Chichester, 1987, 660 p.
- A. L. Mikhal'chuk, O. V. Gulyakevich, K. A. Krasnov, V. I. Slesarev, and A. A. Akhrem, *Zh. Org. Khim.*, 1993, 29, 1236
 [J. Org. Chem., 1993, 29 (Engl. Transl.)].
- O. V. Gulyakevich, A. L. Mikhal'chuk, V. P. Peresada,
 A. M. Likhosherstov, and A. A. Akhrem, Zh. Obshch. Khim.,
 1993, 63, 701 [J. Gen. Chem., 1993, 63 (Engl. Transl.)].
- O. V. Gulyakevich, A. L. Mikhal'chuk, and V. A. Khripach, Zh. Obshch. Khim., 1991, 27, 213 [J. Org. Chem. USSR, 1991, 27 (Engl. Transl.)].
- Organikum, VEB Deutscher Verlag der Wissenschaften, Berlin, 1964.
- O. V. Gulyakevich, A. L. Mikhalchuk, V. N. Pshenichnyi, and V. A. Khripach, in FECS Fifth Int. Conf. Chem. Biotechnol. Biol. Act. Nat. Prod., Jusautor, Sofia, 1989, 3, 252.